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Densities on Manifolds.

General assumption: M ⊂ Rd is a C∞, compact, d′-dimensional manifold,
with the metric inherit from Rd.

Densities on manifolds.

Let P a probability on B(M), a random variable on M is a measurable
function X : Ω→M. If M is orientable a density is f : M→ R+ which
fulfils,

P(B) =

∫
B

f (x)dv(x) being dv the volume form.

Another option is to integrate w.r.t. the d′-dimensional Hausdorff measure.

In local coordinates∫
U

fdv =

∫
ϕ(U)

f (ϕ−1(x))
√

detgij(ϕ−1(x)))dx

where gij are the coefficients of the metric g in the local coordinates (U, ϕ).
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Variance and Expectation

Variance

Let y ∈M, and X a r.v on M with density f , the variance on y, σX(y)2 is

E(d(y,X)2) =

∫
M

d(y, z)2f (z)dv(z) being d the geodesic distance.

Expectation

If σX(y)2 <∞ for all y, the set (possibly empty) of expectations is

E(X) = argminy∈MσX(y)2.

Kendall, 1990: if supp(f ) ⊂ Bd(x, r) for some regular geodesic ball that
does not meet the cutlocus of x, exists a unique E(X).
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Manifold Recovery from a sample of points, filament model

The filament model: Xi = f (Ui) + Zi, where f : [0, 1]→ Rd, the Ui are
uniform and the Zi are zero-mean compact supported; Genovese et al.
(2012a).

INPUT: Ŝ and ∂̂S D.W. of radius ε > 0.
OUTPUT: Γ̂.
ALGORITHM:

1) Compute ∆̂(y) = d(y, ∂̂S) for all y ∈ Ŝ.
2) σ̂ = maxy∈Ŝ ∆̂(y)

3) δ = 2ε, Γ̂ = {y ∈ Ŝ : d(y, ∂̂S) ≥ σ̂ − δ}
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Inference on the dimension:

Testing the manifold hypothesis, Fefferman et al 2015

G(d,V, τ): d dimensional C2 submanifolds of the unit ball in H a separable
Hilbert space, with volume ≤ V and reach ≤ τ < 1. P a probability with
support B(0, 1). The problem: decide from a sample of P if there exists
M ∈ G(d,CV, τ/C) such that∫

d(M, x)2dP(x) < Cε

Finding the Homology of Submanifolds, Smale et al 2008

Theorem: Let M ⊂ Rn compact with reach τ . ℵn = X1, . . . ,Xn iid uniform
on M. Let 0 < ε < τ/2 and U = ∪iB(Xi, ε). Then for n = n(δ), with
probability greater than the homology of U equals the homology of M with
probability > 1− δ.
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Estimation of the dimension:

MLE of Intrinsic Dimension, Bickel and Levina 2005

Heuristic: X1, . . . ,Xn iid in Rp, Xi = g(Yi) where Yi are sampled from a
unknown density f on Rm and f (x) ∼constant on B(x,R) for some R, with
m ≤ p and g is smooth. If we consider the process

N(t, x) =

n∑
i=1

I{Xi∈B(x,t)} ∼ Poisson(λ(t)) 0 ≤ t ≤ R,

with λ(t) = f (x)Vol(Bm(0, 1))mtm−1.
If θ = log(f (x)), the log-likelihood of N(t) is

L(m, θ) =

∫ R

0
log(λ(t))dN(t)−

∫ R

0
λ(t)dt,

then the MLE for m is m̂k(x) =

[
1

k − 1

k−1∑
j=1

log
d(x,Xk(x))

d(x,Xj(x))

]−1

.
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Models

Noiseless model: the data X1, . . . ,Xn are taken from a distribution
whose support is the manifold M; Aamari and Levrard (2015), Amenta
et al. (2002).

The clutter noise model: Xi ∼ (1− π)U + πG, where U is a uniform
distribution on a compact set K ⊂ Rd with nonempty interior, and G is
supported on M; Genovese et al (2012c).
The additive noise model: Xi = Yi + Zi, where the Yi are supported on
M and Zi|Yi is uniform on a segment orthogonal to M on Yi; Genovese
et al. (2012b).
The parallel model: The Xi have a distribution whose support is the
parallel set B(M, r); Berrendero et al. (2014).
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Open problems

Things to define:
depths.
outlier.
classical distributions.

To estimate/test:
Positive reach/condition number
Is M orientable?
It has empty interior? In general, detect a lower (non-linear) dimensional
structure.
Estimate µd′(∂M) being µd′ de d′ Lebesgue measure.
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Model and problem

The model and the problem

We will assume the noisless model wit f > f0 > 0 Lipschitz. The problem{
H0 : ∂M = ∅
H1 : ∂M 6= ∅

Why not just estimate the manifold?

S

Figure: The boundary of D.W. estimator is not a good estimation of ∂M
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The heuristic idea

Xkn,x = {X1(x), . . . ,Xkn(x)}; rx,n = maxy∈Xkn,x ‖y− x‖; Xx,kn = 1
kn

∑kn
k=1 Xk(x).

Assume that kn → +∞ slowly enough to have maxx∈S rx,n
a.s.→ 0.

If ∂M = ∅{
(X1(x) − x)/rx,n . . . (Xkn(x) − x)/rx,n

}
is “close” to a sample uniformly

distributed on B(x, 1) ⊂ Rd′
with d′ = dim(M).

As kn →∞ we expect ‖Xx,kn − x‖ a.s.→ 0, then maxi ‖XXi,kn − x‖ a.s.→ 0.

If ∂M is a C2 manifold
If x ∈ ∂M, the “locally rescaled sample” is close to sample on a half unit
ball and ‖Xx,kn − x‖ → αd′ with αd′ a positive constant. Then
maxi ‖XXi,kn − x‖ a.s.→ αd′ .

We decide ∂M = ∅ if maxi ‖XXi,kn − x‖ is small enough.
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Some definitions.

Definition

Let us define: ri,kn = ‖Xi − Xkn(i)‖ ; rn = maxi≤n ri,kn

Xi,kn =

X1(i) − Xi
...

Xkn(i) − Xi

 ; Ŝi,kn =
1
kn

(Xi,kn)
′(Xi,kn).

Qi,kn is the plane spanned by the d′ eigenvectors of Ŝi,kn associated to
the d′ largest eigenvalues.

X∗k(i) the normal projection of Xk(i) − Xi on Qi,kn and

Xkn,i = 1
kn

∑kn
j=1 X∗j(i).

δi,kn = (d′+2)kn

r2
i,kn
‖Xkn,i‖2, for i = 1, . . . , n.

The proposed test statistic is: ∆n,kn = maxi δi,kn .
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Some results

We will denote by Ψd′(t) the cumulative distribution function of a χ2(d′)
distribution and Fd′(t) = 1−Ψd′(t).

Theorem

M is C2, compact, the density f is Lipschitz and f (x) > f0 on M. ∂M = ∅ or
C2. If kn/(ln(n))4 →∞ and (ln(n))k1+d′

n /n→ 0, the test{
H0 : ∂M = ∅
H1 : ∂M 6= ∅ (1)

with the rejection zone

Wn =
{

∆n,kn ≥ F−1
d′ (9α/(2e3n))

}
, (2)

fulfills: PH0(Wn) ≤ α+ o(1). The test (1) with rejection zone (2) has power
1 for n large enough.
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More Results

Theorem

Under previous conditions, if we define

Ψ̂n,kn(x) =
1
n

n∑
i=1

I{δi,kn≤x},

then, for all x ∈ M,

E
(
Ψ̂n,kn(x)−Ψd′(x)

)2 → 0 as n→∞.



Manifold estimation - Topological data analysis Some problems and models On boundary estimation References

Some probabilistic results for the proof

Lemma

Let X1, . . . ,Xn be an i.i.d. sample uniformly on B(x, r) ⊂ Rd. Let us denote
Xn = 1

n

∑n
i=1 Xi, then we have:

(d + 2)n‖Xn − x‖2

r2
L−→ χ2(d), (3)

Lemma

Let X be uniformly distributed on
Bu(x, r) = B(x, r) ∩ {z ∈ Rd : 〈z− x, u〉 ≥ 0} where u is a unit vector, then

E
(
〈X − x, u〉

r

)
= αd, where αd =

(
Γ( d+2

2 )
√
πΓ( d+3

2 )

)
. (4)
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Some key results for the proofs

Theorem

Let M ⊂ Rd be a compact, d′-dimensional C2 manifold without boundary. X
with Lipschitz density f . There exist positive constants R1 and C1 such that:
if r ≤ R1, then

∣∣PX(B(x, r))− f (x)σd′rd′ ∣∣ ≤ C1rd′+1, with
σd′ = vol(Bd(0, 1))

Lemma

Let X1, . . . ,Xn be an i.i.d. of PX , with ∂M = ∅. Then there exists a constant
Ad such that

X∗kn(i) = (Id + Ei,n)ϕXi(Xkn(i))− Xi with: maxi ‖Ei,n‖∞ ≤ Ad

√
ln(n)

kn
e.a.s.
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Simulations

0
0.2

0.4
0.6

0.8
1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

S2+ boundary points

Figure: n = 3000 points, Xi, boundary point if 2e3

9 Fd′(δi,k) ≤ 5%
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Simulations
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